Clustering classifiers for knowledge discovery from physically distributed databases
نویسندگان
چکیده
Most distributed classification approaches view data distribution as a technical issue and combine local models aiming at a single global model. This however, is unsuitable for inherently distributed databases, which are often described by more than one classification models that might differ conceptually. In this paper we present an approach for clustering distributed classifiers in order to discover groups of similar classifiers and thus similar databases with respect to a specific classification task. We also show that clustering distributed classifiers as a pre-processing step for classifier combination enhances the achieved predictive performance of the ensemble.
منابع مشابه
A Knowledge-based Web Information System for the Fusion of Distributed Classifiers
This chapter presents the design and development of WebDisC, a knowledge-based Web information system for the fusion of classifiers induced at geographically distributed databases. The main features of our system are: i) a declarative rule language for classifier selection that allows the combination of syntactically heterogeneous distributed classifiers, ii) a variety of standard methods for f...
متن کاملConceptual Clustering of Heterogeneous Distributed Databases
With increasingly more databases becoming available on the Internet, there is a growing opportunity to globalise knowledge discovery and learn general patterns, rather than restricting learning to specific databases from which the rules may not be generalisable. Clustering of distributed databases facilitates learning of new concepts that characterise common features of, and differences between...
متن کاملModel-based Clustering on Semantically Heterogeneous Distributed Databases on the Internet
The vision of the Semantic Web brings challenges to knowledge discovery on databases in such heterogeneous distributed open environment. The databases are developed independently with semantic information embedded, and they are heterogeneous with respect to the data granularity, ontology/scheme information etc. The Distributed knowledge discovery (DKD) methods are required to take semantic info...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Data Knowl. Eng.
دوره 49 شماره
صفحات -
تاریخ انتشار 2004